Online Particle Size Measurement System
MYTA
Consistent granulation for an optimized production process
Online Particle Size Measurement System MYTA
Consistent granulation for an optimized production process

Monitoring of granulation in real time
Measuring results that can be reproduced

Application for hammer and roller mill grinding

The online particle size measurement system MYTA is suitable for the grain processing industry to measure particle size in real time. In combination with the Antares Plus roller mill deviations of the granulation are recorded and via servomotor the grinding gap is immediately adjusted to the target values.

Online determination of the granulation in the 10 – 5000 μm range

The measuring system is suitable for continuous particle size measurement in the 10 - 5000 μm range. The online particle size measurement system MYTA combines laser diffraction and image processing into one system and determines thereby the particle size distribution of the ground material in the ongoing process.

Consistent online analysis

The operating software shows deviations of the particle size distribution and provides the basis for a monitored and traceable product quality.

Advantages

End products with consistent particle size distribution that is traceable at any time

Measuring results are directly comparable with traditional sifting method

Minimized yield loss thanks to rapid detection of sieve ruptures
Analysis and tracing of each batch

For maximum yield

Detection of sieve ruptures

When used in grinding, the particle size measurement unit measures the particle sizes and compares the actual and target values. If the deviation is too great over a longer period, this indicates a sieve rupture. Thanks to the rapid detection, yield loss is reduced to a minimum.

Monitoring of the particle size

The MYTA online particle size measurement continuously measures the particle size distribution and compares the actual and target values. Antares Plus records deviations and immediately adjusts the grinding gap via servomotor to the target value.